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4. List of Material Contained in the Appendix

The appendix contains copies of the following papers which have been
published. The titles and authors have been listed below, all other
publication material is contained in section 5c. of this report.

1) "“Kinematic Analysis of Three-Link Spatial Mechanisms Containing
Sphere-Plane and Sphere-Groove Pairs," G.N. Sandor, D. Kohli, M.V.
Hernandez, and A. Ghosal.

2) Kinematic Analysis of Four-Link Space Mechanisms Containing
Sphere-Groove and Sphere-Slotted-Cylinder Higher Pair," A. Ghosal, D.
Kohli, and G. N. Sandor.

. The abstracts of the following Masters Thesis and Doctoral Dissertations
have also been included in the appendix.

1. “Analysis of Spatial Mechanisms Containing Higher Pairs," Masters
Thesis by Ashitava Ghosal.

2. “Optimization of Spatial Mechanism", Ph.D. Dissertation by Charles F.
Reinholtz.

3. "Kinematic Synthesis and Analysis of Three-Link Spatial Function
Generators with Higher Pairs," Ph.D. Dissertation by Manual V.
Hernandez.
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5.a. State of the Problem Studied
Design and analysis theories for planar mechanisms are well developed and such

devices are in common use. However, many automation tasks require mechanisms which

. can generate spatial motion. One solution is to employ multi-degree-of-freedom,

multiple-input robotic manipulators. However, these devices are limited in speed
and accuracy, and require sophisticated electronic control systems. On the other
hand, sigle-input spatial mechanisms, the topic of this research, are purely
mechanical, and are better suited for performing highly repetitive automation tasks
of liﬁited complexity more efficiently, reliably and economically than robotic
manipulators.

Single-input spatial mechanisms are much more difficult to design and analyze
than planar? mechanisms. As a result, their use to date has been quite limited.

This is especially true of spatial mechanisms containing higher pairs (joints which

- develop only point or line contact and allow several degrees of freedom of relative

. motion).

The research being conducted under this grant attempted to develop simplified

theories for designing and analyzing single-input spatial mechanisms.

5.b. Surmary of Most Important Results

Accomplishments to date include vector-theories for the analysis of spatial
function, path and motion generators, containing higher-pair joints which allow
minimizing the number of mechanical parts. For example, a newly analyzed class of
spatial function generators has only two moving links: the input and the output.
Also completed are design theories which assure that a synthesized mechanism is
free from the "branching defect" (i.e. satisfies the physical motion requirements
as well as the mathematical criteria. Additional theories have been developed for
synthesizing several types of single-input spatial motion generator mechanisms to

have complete input crank rotation, to have optimal transmission characteristics
and to have the correct order of output positions.

.....................
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Methods have been developed for efficently formulating and solving systems of
non-l1inear equations which cammonly arise in the synthesis of spatial mechanisms.

It is believed that the theories developed under the sponsorship of this grant
have greatly expanded the utility of spatial mechanisms in two important ways.
First, it has led to simplified design and analysis theories for spatial mechanisms
containing higher pairs. Second, it has produced a new "wholeistic" approach to
spatial mechanism design, wherein many of the "real-world" constraint conditions

are considered in the design process.

5.c. List of Publications
1. "Kinematic Analysis of Three-Link Spatial Mechanisms Containing Sphere-
Plane and Sphere-Groove Pairs" G.N. Sandor, D. Kohli, M.V. Hernandez and
A. Ghosal, Proceedings of the Seventh Applied Mechanisms Conference, 1981
pp. XXXII-1 to XXXII-11; Mechanism and Machine Theory, 1984.

2. “Kinematic Analysis of Four-link Space Mechanisms Containing Sphere-Groove
and Sphere-Slotted-Cylinder Higher Pairs," A. Ghosal, D. Kohli, and G.N.
?andor, ASME paper 82-DET-123, Presented at the 1982 ASME Mechanisms Con-

erence.

3. "Analysis of Spatial Mechanisms Containing Higher Pair,” Masters Thesis by
Ashitava Ghosal, Presented to the Graduate Council of the University of
Florida, August, 1982.

4, “Optimization of Spatial Mechanisms," Ph.D. Dissertation by Charles F.
Reinholtz, presented to the Graduate Council of the University of Florida,
August, 1983.
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sented to the Graduate Council of the University of Florida, April 1983.

5.d. Participating Scientific Personnel
Personnel Drawing Support from this Project:

1) Dr. George N. Sandor, P.I.

2) Dr. Dilip Kohli, Consultant

3) Mr. Ashitava Ghosal, earned Ph.D., August, 1983.
4) Dr. Charles Reinholtz, earned Ph.D., August, 1983.
5) Mr. Partha De, Master's Degree Candidate

Personnel Contributing to the Research but not drawing support from this
Project:

1) Mr. Xirong Zhuang, Visiting Engineer from the People's Republic of China.
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-~ Abstract—Kinematic pairs in a spatial mechanism are viewed cither as allowing relative screw motion

betweea links or as oonslmmng the motion of the two chains of the mechanism connected to the two
clements of the pair. Using pair geometry constraints of the sphere-plane and sphete-groove kinematic

pairs, the displacement, velocity and acceleration equations ac derived for, R-Sp-R R-Sp-P, P-Sp-P,

P-Sp-R and R-Sg-C three-link mechanisms. For known values of the input vnnable. other variables

are computed in closed form. The analysis procedures are illustrated using numerical examples.

B 1. INTRODUCTION ¥ closed-form displacement relations of RCCC mech-
The mechanisms containing higher pairs such as anisms. Wallace and Freudenstein(7] also used vec-
. o cams, sphere-plane, sphere-groove, or tors to obtain closed-form displacement relations of -
- cylinder—plane provide the designer with the capabil- . RRSRR and RRP RR mechanisms.

ities of designing machines and mechanisms to satisfy - Yang[8] proposed a general formulation usmg dual
more complex and exact functional requirements - numbers to conduct displacement analysis of

o~
i c than feasible with only lower pair mechanisms. These . RCRCR spatial fivelink mechanisms. Soni and
, A mechanisms in general are compact and contain = Pamidi{9] extended this application of (3 x 3) matri-
S - fewer finks than those with lower pairs. ces with dual elements to obtain closed-form dis-
. In recent years, there has been considerable devel-  placement relations of RCCRR mechanisms.
" opment in the tools for kinematic analysis of spatial Yuan{[i0] employed screw coordinates to obtain
mechanisms containing lower pairs. closed-form displacement relations for RRCCR and

Kinematic analysis of space mechanisms was ini- othe spatial mechanisms.
tiated by the significant contribution of Jenkins and  Crossley[ll), Sharma and
Dimentberg{l]. Dimentberg[2, 3] demonstrated the Torfason[12), Dukkipai and Soni{l3] used the
use of dual numbers and screw calculus to obtain  method of generated surfaces to conduct analysis of
closed-form  displacement relationships of an  single loop mechanisms containing revolute, pris-
RCCC* and other four-, five-, six- and seven-link  matic, cylinder, helical and spheric pairs. Hertenberg
spatial mechanisms containing revolute, cylinder, and Denavit{14] contributed iterative techniques to
prismatic and helical pairs. Denavit[4] derived conduct displacement analysis of spatial mechanisms
closed-form displacement relationships for a spatial  using (4 x 4) matrices containing revolute, prismatic,
RCCC mechanism using dual Euler angles. Yang[5] cylinder, helical and spheric pairs. Uicker[l5] ex-
also derived such relationships for RCCC mech-  plored in further detail the (4 x 4) matrix approach
anisms using dual quaternions. of Hartenberg and Denavit.  Soni  and
Vectors were first used by Chace[6] to derive Harrisberger[16] contributed an iterative approach
for performing kinematic analysis using (3 x 3) with
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‘ - - - - ——. dual elements. Kohli and Soni{i7, 18] used finite
fRescarch """;“50' of Mecchanical Engincering. screws to conduct displacement analysis of single-
;s $Associate Professor of Mechunical Engineering. d 1 h 1 R, P.
¥ < space mechanisms involvin
. §Graduate Rescarch Assistants in  Mechanical En- Igog,an d‘“o- 00p spa &
L gincering. and § pairs.
“R: revolute. P: pnsmatic. C: cylindric, §: spherical, Sp: Bagci[19] used a (3 x 3) screw malp} for displace-
sphere-plane and Sg: sphere—-groove joint. ment analysis of a mechanism containing two revo-
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lute pairs, one cylinder pair and one spheric pair.
Dobrovolski[20] used the method of spherical images
10 analyze space mechanisms containing revolute and
cylinder pairs. Dufly[21,22). Dufiy and
Habib-Otahi[23) used the method of spherical trian-
gles to derive displacement relations for five and six
link mechanisms containing revolute and cylinder
pairs. Keller[25] and Gupta[26} also analyzed space
mechanisms containing revolute, prismatic, cylinder,
helical and spheric pairs. Recently Kohli and
Soni{26) and Singh and Kohli{27] used the method of
pair constraint geometry and successive screw dis-
placements to conduct analyses of single and multi-
loop mechanisms.

In the present paper, screw displacements ex-
pressed in vector form and the pair geometry con-
straints, also expressed in vector form, ars used to

derive the displacement, velocity and acceleration -

equations for R-Sp-R, R-Sp-P, P-Sp-R, P-Sp-P
and R-Sg-C three link mechapisms.
Since Revolute (R) and Prismatic (P) pairs are

-special cases of the cylinder pair (in prismatic pairs,

the rotation is zero; for revolute pairs sliding is zero),
we derive the analysis equation for C-Sp-C and
C-Sg—-C mechanisms, and then force rotations or
translations at one or more pairs to zero, to obtain
the equations for the above described three-link one
degree of freedom mechanisms.

Briefly. the procedure for obtaining the analysas
equations is as follows.

Step 1. Consider the C-Sp-C mechanism and the
C-Sg-C mechanism.

Step 2. Separate the two moving links (Bodies 1 &
2) 2t the sphere-plane pair for the C~-Sp~C case and
at the sphere—grove pair for the C-Sg-C.

Step 3. Use the screw displacements in vector form
to describe the new (jth) position of the sphere-plane
{Sp) or sphere-groove (Sg) pairs from two sides of
the pair. '

Step 4. Use the pair geometry constraints on the
position of the pair obtained from two sides.
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Step 5. Force the cylindrical (C) joints as revolulg
(R) or prismatic (P) joints by setiing the sliding or the
rotation equal to zero at cylindrical pairs.

2. THE THREE-LINK MECHANISM AND ASSOCIATED
YECTORS

Figure 1 shows the initial position-of two rigid
bodies groundad via cylindrical pairs and connected
together by a sphere—plane pair. Also shown are the
following vectors and scalar quantities:
u, unit vector defining the direction of the axis of

cylindric pair A.

" 4 unit vector defining the direction of the axis of

cylindrical pair B.
P vector locating the axis of cylindric pair at 4 in
the fixed coordinate system.

Q vector locating the axis of cylindsic pair at B m

the fixed coordinate system.
unit vector perpendicular to the plane of the Sp
pair embedded in body 1.

A’ vector embedded in body 2, congruent with A in
the starting position, as shown in Fig. 1.

R vector locating point R, the sphere center in the
fixed coordinate system.

0, rotation of link 1 about axis u,.

8, rotation of link 2 about axis u,.

S, translation of link | along axis u,.

S, translation of link 2 along axis v,

Figure 2 shows the C-Sg—C mechanism with all
associated vectors and scalars. Description of all
parameters are the same as for the C-Sp—C mech-
anism except for the direction of the vector A, which
is now along the direction of the groove and also the
addition of S;, which is the translation of the sphcre
along the direction of A. .

3. PAIR GEOMETRY CONSTRAINT EQUATIONS

Figures 3 and 4 show a sphere-plane (Sp) pair and
a sphere-groove (Sg) pair with the vector R locating
R, the sphere center. The vector A, in the Sp pair is
defined as a vector perpendicular to the plane in
which the sphere moves. In the Sg pair, the vector A
defines the direction of the groove.

Fig. 2. C-§,-C mechanism.
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Kinematic analysis of three-link spatial mechanisms

We can now define the vectors R, A, R; and A;.
These new vectors will define the displaced position
and direction of initially coincident point R and
vector A in bodics | and 2 respectively after some
relative motion between bodies | and 2. The prime
notation here is used for new position expressed from
the motion of body 2, whereas the unprimed no-
tations are used for new positions expressed from the
motion of body 1.

The pair geometry constraint equation for the Sp

pair ist
& .
Eﬂ&—&rAn=mn=QLz”. )

which expresses that any relative motion between the
sphere and the plane must be perpendicular to the
vector A; (Fig. 1).

The pair geomietry constraint equation for the Sg
pair is
da'R;, d°

d'R,
—_— s g -
de" dr* d__(l" AiSg) n=0,1,2,... [03)

where Sg; is the translation of the sphere along the
groove in the direction of A;. The constraint equation
for the Sg pair expresses that any relative motion
between the sphere and the groove must be along the
groove which is in the direction of A/ (Fig. 2).

" & WORKING EQUATIONS
Referring to Fig. 1, let A be a vector in body 1 A’
a momentarily congruent vector in body 2 in the first
position, perpendicular to the plane of the Sp pair.

Fig. 3. Sphere-plane (S,) pair.

Fig. 4. Sphere~groove (S,) pair.

tSee Appendix for the derivation from the complete
constraint equation,

mmt 168 p. 3.

Alter some displacement of the mechanism, these
vectors, in general, will separate due to the relative
motion of the joint elements. Noting that both bodies
§ and 2 are connected to ground by C pairs, we use
the equations developed by Kohli and Soni{26] for
expressing the direction of 2 vector embedded in the
rigid body and also the displaced position of a point
of the body after a rotation 8 about the cylinder axis
and a transition S along the same axis. Using the
prime notation for positions of the vector A’ obtained
from the motion of body 2 and the unprimed no-
tation for positions of vector A (assumed frozen in
body [ in the first position and then moving with
body 1) from the motion of body 1, the displaced
directions of the vector A in bodies 1 and 2 are

A;j=cos0,JA —(A-u)u,] +sinB,(u, x A)

+(A-u), 3
A; =c0s 0p{A —(A -uz)u,} +sin Bfu, + A)
+ (A . u,)l.l. (4)

Also, the displaced position of the point R in rigid
bodies | and, 2 are given by:
R;=cos 0, J(R-P)—((R—P)-u]+sinb,
x (v, xR=P))+[(R—P) -ulu,
+u,S,+P (5)
R; = cos 0, (R — Q) — (R — Q) - ug)u,} +sin §,,
% (ug(uy x (R— QN+ [(R—Q)-u,lu,
+0,5,+Q. | ©

Using the identity [A—(A-uu J=(,x A)xu,
introducing the vectors -

K=R-P
. ™
L=R—-Q

and the following notation for any two vectors v, and
D,

Ucp=(uc x D) x ug, (7a)

we can substitute eqns (7) and (7a) into egns (5) and
(6) to get

R,=R+u,S,+(cosl,— DU, +sin0,(u, x K)
(5a)

and

R, = R + 1,5, + (cos 0, — 1)U,, +sin0y(u, x L).
(6a)

We now take the time-derivatives of equations for R,
and R; and using the notation of dots above the

VI e S Sag M e
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vanables to indicate time derivatives, we obtain the
following equations

i{, = U‘S.,q + [cos 0,4(u, x K) ~sin 6.4104x]64, (8)
R, = u,Sy+ [cos O,(u, X L) ~ sin 0,u,,10, (9)

i, = u,f,.,» ~ [cos 04Uk + sin 0,4u, x K)]é},

+ [cos 0,{u, x K) —sin 8 u )8, (10)

R =0,5,~[cos0yU,, +sinB,(u, x L))},
+[cos 0,(u, x L) —sin0,Up10,. (1)

substituting eqn (7a) into eqn (4), using egns (5a) and
{62). and by making the following substitutions

T M, =cos0,(u, x K) —sin0,U
: . 12)
My; = cos O, (uy x L) —sin 8, U,,
N, =c0s0,U,+sin0,(u, x K)
@13)

N. = CO0S oﬁU'L + Sin ah(u' x L),
we can derive the following working equations

_ A; = [cos 0,{u, x A)—sin 05Us0s
- —[c0s 0, U,, +sin 0,(u, x )62,

L K= V0, —W, 03 (16)

V=05 0,(up x A) ~sin 0,U,,
and
Wy, =cos 04U, +5in 0, (u, x A)

R, —R; = 0,5, + (cos 0~ U .. +sin 0,(u, x K)
- u.S’ - (COS 0.} - ‘)UBL

—sin 0yfu, x L) a7

R —R =08y +M0,—uS, —'M,,,ﬂ,, (18)

R =us, ~NO +M 0,

—u,Sy + NG - M0, (19)

5. DISPLACEMENT ANALYSIS

To analyse the displacements ol a particular 3-link
one-degree-of-frccdom mechanism containing either
the Sp or Sg pair, we need only to take working eqn
(17). apply the constraints of the particular grounded
pairs and then substitute the results into the following
pair geomelry constraint cquations for displace-
ments.

. Tt e e Tt PR
AL, W, T, S, S i L S .
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A; =[cos B (uy x A) —$in 05U, 05 =V, 6, (15)

GEtORGE N. SANDOR ef of.

For the Sp pair,

(R—Rj}-A/=0. (20)
For the Sz pair,
(R;—R) =A/S;. 1)

Observe that eqns (20) and (2]) are eqns (1) and (2)
with n =0.

The cylindrical pairs used in the derivation may be
forced 10 work as prismatic (P) pairs by letting 8 = 0
or may be forced to work as revolute (R) pairs by
letting S =0.

5.1 The P-Sp-P case
For this mechanism, we use 6, =0,=0 and eqns
(14) and (17) are simplified to
R —Rj=u,5,—u,5,

A=A

and

Substituting in eqa (20), we get

' (0, Sy—u,Sg)-A=0 (22
which simplifies to the input/output equation
Il‘ - A -
Sy Yy Sy (23)

52 The R-Sp-P cqse

8, is the input; S, is the output and 0,= S, =0.
Equations (14) and (17) with 8, = S, =0 substituted
in eqn (20) provide,

- [—usSyF(cos 04— WUk +sin 6, fa, xK)} - A =0~ -

After simplification we obtain

. Som {(cos 8, — WU, x+sin 6,4u, x K)]- A

‘l‘ * A ) (24)

5.3 The R-Sp-R case
We have for this case S, = S, = 0, and eqn (14) and
{17) are simplified to obtain

R, —R; = (c0s 04— U ,x + sin 0,(u, X K)
—(cos0,,— 1)U, —sin y(uy x L)
and
A=A+ (cos 0y — DU, , + sin0,(uy x A).

Substituting the above equations into eqn (20); and
simplifying the resulting equation, we obtain
=S A +(cosl, - —U, A-S,-U,l

+sinfJ(vyxL)-A =S, -(u, x A)] =0 (25

T .-1-1-—r-—vv—rj
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. A where S, is the known vector " Substituting in eqn (21), we have
: S,=(cos 0, — DU +sin 0 (u, xK).  (26) u,Sy, — S, + (s 0y — 1)U p,
( Equation (25) can be solved for 0, by using the +sin 0,y x 1) + 4,5, = 0.
3. following identities Taking the dot product of eqn (31) with (A; x u,) and
- upon simplification, we - .
- 1- tan’g—' 2tan %’ po P &t
- 0s0p= —————; sin0,=———— (27) c0s0,[S; (A x us) + U, - (A x u,)] +sin 0,
- 172 thd]
P+t 1+uao S XS Ups + Upe - Upd — (0, x L) - Uy = 0. (32)
) " and simplifying the resulting quadratic equation to  Again, 8,, can be obtained by substituting eqns (27)
-t yield into eqn (32) to obtain 2 quadratic whose solutions
"3 are
N 6. —b+ /(b'—c(c—2a)
: tan o7 = c—2a @ 6, _—btS@+b'-c)
. tan 2 j= 33)
-~ where: . c—a
<1 . . :
3.1 a=-—U, -A~S;-U,, where
= - A-S,
N b=(u,xL)-A=S§; (usx A) 6=S-(Axv)+U, - (Axn,)
i c= _s‘ . A.
"- b=s"Uu+U.L'U'4
- 5.4 Tke P-Sp~R case c=— {uy x L)-U,,. .
L Here, 8, = S, =0 and we have
L Taking the dot product of eqn (31) with (u, x L)
- R,=R, =u,S, —(cos 0y —)U,, —sinO,(u,; x L) and simplifying, we get 1
2nd o 15 (0 X 1) —(e038, — DUy -(uy x L)
- A=A + (cos 8y — 1)U, + sin Oy (u; x L). G Aj-(u, x L)
" Substitnting the equations above into eqn (20) and sin 0,/(u, x L) - (u, x L)
-4 smplifvi . - 7 - o 34)
o simplifying, we get o Ajr(e,x L)
4 ’
o i (c0s 0y — I —Up - A — S, (u,-Up)] +sinb,, Taking the dot product of eqn (31) with u, and
X [0 X L)-A = 5,8, (s x Al Squ,-A=0. (29) SmPUfying, we get
; ~; Substituting eqns (27) in eqn (29) and simplifying the Sy =[S; — (cos 8y — 1)Uy, — sin Gy(u, x L)
f\', resulting quadratic gives us ' —SgA/l-u, (35)
Al
L tan 0. _ b2 Vb, -~ clc —2a) 30) 6. VELOCITY AND ACCELERATION ANALYSIS
~, 2 €—2a To obtain the velocity and acceleration relations,
" . - we can cither (a) take the derivatives with respect to
x where this time time of the displacement equations or (b) use the
! - A ] higher order constraint equations. For the P-Sp-P
~ @=—Us A =Sy, Us) case, taking the derivative of the displacement equa-
v S=(uyxL)-A-S,u, (uyxA) tion is trivial. But for the other cases, this procedure
" cm—lu,-A is cumbersome. 1t is therefore more convenient to just
o Lota® A use eqns (14)-(19) in the following constraint eqns
f ; 5.5 The R-Sg-C case (3{»‘)—2(39). which are eqns (1) and (2) with n = 1 and
- Only S, in eqn (17) is identically zcro, so we get iy .
5 ! ' For the Sp pair
R, =R = —u,5, +S,— (cos U, — 1)U, (R,—R)-A;+(R,—R)-A =0 36)
.. - sin 0,(u, x L)
o and
2 where S, is given by cgn (26). Also,
> (], —R)-A +2R,~R)- & +(R,~R)-A;

., A=A +(coslly, — 1N, +sinfly(u,x A) =0. (3N
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For the Sz pair where
R,—R; =As¢,+Asc, (38) D =M, A/~(R,—R)-V,, (46)
and ‘
R = K;S,+ 24,8, + A S, (39) 6.4 The P-Sp-R case
B -k =A% Ais “ Equations (18) and (I9) are
6.8 The P-Sp-P case
Here we can use the time derivatives of the dis- R-R =uS,—M, 0,
placement equation to get B,—R; = u,Sy+ Nofl, - M, Jy
ucA also,
s.= ".' A S” ) .
A A;=V, 0, and A =V,0, —W,0%.
u,-
Sy= u,-AS"’ o) Substituting in eqas (36) and (37) we get
u‘ . A B, Al
= . 4 = i 4
5 u.'Ag"’ “n O M.-A}—(R,—R,')'V,,s” “n
6.2 The R-Sp-P case and
Equations (18) and (19) become .
Oy =—[u S, +20, Va)s
B B =M= uiS, b= p St 2o VSl
) ; i ANy A~ 2M, -
o R~ R = — N4+ M, —usS, - R, - R') w,,,)d‘] (48)
)
A=A, A= A;=0. where D is given by eqn (46).
Substituting in eqns (36) and (37), we gt " 6.5 The R-Sg-C case
M Only S, $,and §are zero and eqns (18) and (19)
Sy ..__!L__d (42) become:
. n' b A .
and R~ R =M by~ u,Sy—Mfy
Sy=— ':" 0+ :6,, @) =
- d R —R; = —NFo+ M, —uSy
6.3 The R-Sp-R case +NBL — M, Ty —_—
S”gsq"ssﬁas,,ss,,§$,zo_ also,
- Equations (18) and (9) become A; = V,,O,, and X; = V,ﬂ',,. - \V,d zq-
. Substituting the expression for (R, — R’) just obtained
R = M ]
and k’ R’ M“d" N "d" into egn (38) we get !
—R = N 0L+ M0, + N O3M, 0,
Alsokl Rp NG+ M0+ NplaM,0y M‘, ~~u,$,,—M~a- A,'$c;+V.,0.,Sa, 9
r=V (1‘; L=V, 0, —W,0: 0y S5, and S, are unknowns in eqn (49).
K= Valui 4= Vala M Taking the dot product of eqn (49) with (A; x u,),
Substituting in eqns (36) and (37). we get we get
by = Mu A @y  Mala=Mafa) (A x ) = V- (A] x i, S,
* My A =(R-R)V, or
and ' My A, xu (50)
- <A’ .\‘ (ch.,"'!“ ,) Al xu
bym e b, Matig 54,0, Vot M) 4 x u
Now, taking the dot product of eqn (49) with
SN A M, zM,, YV, —(R,~ R,') “Wa g [A; % (SeVa + M, we have
D L]
(45) M0, —uS) A % (S, Va+My)=0
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or
‘A A :

Sa= ':',“ A?‘féif;,: - ,;: _')" 6 0D

Agein aking the dot product of eqn (49) with
w0, % (SgVy +M,),
we have
OLAy—A;S5) 0, x (SqVy+ Mp) =0

or

SG‘M”. Uy % (SQV.+ M')ﬂ

A s % (SqVa +My) ¥
Acceleration:  Substituting the expression for
(&, — R) obtained cartier for the R-Sg-C case into
eqn (39), we will get
= Nofy+ M0, — 0,8y + Noffy, — MyJy
= (Vafy— Wyl3)S +2V 008 + AS,

Tor

9,5y + A SG+ (SgVa+ M)y
== NGy + M+ Ny + SgW )05
— 2V 3)
st
6y

VEOCITY

(52)

T e T ¥
CHie WO A A A A St S e S - .
fa it BN S i e A ;

mmt 168 p. 7.

Letting X be equal to the r.h.s. of eqn (53) and by
using the same technique of taking the dot product
of eqn (53) with the proper cross-products, we will

obtain the following
)

. X-A/xu,
0""(s,,v,,+.\l,) A X u, G4
x 'A; % (SGI '."'l.\’.)
- Sa uy A X (S Ve +My) 53)
Sq - X-uyx(S;,Vy+My) (56)

A s % (5,Va + My)

7. NUMERICAL EXAMPLES
1. Analysis of a R-Sp-R mechanism.
The vectors describing the mechanism are
u,=0i+1j+0%
u, = (37 + b + 05)1/,/(10)
p=0i +0j + 0K
Q=0i +4 +0.75£
R li+1.5+26
A=0i +07+1£
The plot of the output displacement (8,), velocity
(0,) and acceleration (J,) are given in Fig. 5.

2. Displacement, velocity and acceleration analysis
of a R-Sg-C mechanism.

DISPLACEMENT 1 \
65.65
\ éA =1

)

By

+

ACCELERATION

L1} B
(|

[ L
L] 1]

Fig. 5. Plot of 0, @, and 0, for the R-S,- R mechanism.
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. Tuble of displacements, velocities and accelerations
‘a s L % S¢ 5 S Ss 5 5
s a2 &L 200 13 <156 -0 A5 1.7 .3
@ 1299 12 L2 -2 -L9s -kl L2679 -3
80 -95.87 -3.3 3.3 -2.05 1.66 558 2.0 -8t  -4.07
120 -2 .% L0 -6 1.99  -.35 1.1 189 -.$3
oo -93.38 .39 AL .55 1.42 -l.0 08 1.6 .28
N0 8104 .46 L8 132 68 -1.05  -1.06 -1.20 .90
220 6147 .5t 06 1.55 Ol -8 -[.65 -4 1.23
W0 40.35 .54 003 1.3F 0.5  ~.67  -1.65 e .26 j
20 -19.17 S1 -.07 .85 -9 -m 105 123 9 .
T3S -2.2 A5 -8 55 SRRV S 1] -5 1.69 .52

The mechanism parameters are

u, = (1i + 27 + 16)1/,/(6)
v, = (i + 7 + 00N/ /(2)
P =0i +0f +0£
. Q=0i+07+1£
R=37+3+3F
- A=(1F + 17 + 20)1/,/(6).
The motion parameters are: 8, is one unit of angular

velocity and 8, is zero, ‘both constant for j =0,
1.2,...

The results of the analysns for the R-Sg—-C mech- -

anism are shown in a table on the next page.

The direction of the rotations and linear motions
are established using the right hand rule. Rotations
are positive counterclockwise looking at the head of
the unit vectors u, and u, Linear motions are
positive when they are in the direction of the vectors
they are associated with.

It is to be mentioned here also that although the
quadratic equations gave two sets of solutions, only
one set will define the motion of the mechanism. The
other set of solutions are for those positions in which

. the mechanism has to be disassembled into the other

possible con'ﬁguration.:. CONCLUSIONS

Displacements, velocities and accelerations have
been derived for several three-link spatial mech-
anisms containing sphere-plane and sphere-groove
pairs. The groove of the sphere-groove pair was
assumed to be a cylindrical groove, resulting in
straight line axis of the groove. However, 2 more
generalized groove may be one whsoe axis is a spatial
curve. The authors are working on developing anal-
ysis procedures for mechanisms containing such a
generalized sphere-groove pair. The expected results
of their work will be the subject of a forthcoming
paper. Similarly, the authors also have the gener-
alization of the sphere-plune pair in progress. in

which the parallel of the pair are generalized to form
equidistant curved surfaces.
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APPENDIX
1. Spkere-plane constraint equation
The complete displucement contraint cquations of the
Sp-pair are
R,—R; =S,u, _ (a)

w, A =0 )

and

where wj, is a unit vector in the plane of the Sp pair,
perpendicular to A, and is in the direction of the relative
motion of point R of body 1 with respect to the initially
cvincident point R’ of body 2.

Drrivatives of equations (a) and (b) with respect to time
are taken to give the following velocity and acceleration
constraint equations

mmt 168 p. 9
Velocity
R,-R& =$,u,+S5,i), ©
ahd 4
8, A +up- X =0 )
Accelerution:
R, — R = S,pi, + 28,55, + S, ©
and
B A+ 2 A +u), - A =0. o

The constraint eqns (a)<(f) are complete in the sense that all
of the important variables in the motion of thejoint elements
are included. Also, the Coriolis component in the ace-
kr%ﬁon constraint eqn (f) is evident since A; is & function
of 0,

2. Proof that (d% dl')[(R, =R)-A]=0n =012 satisfies

the complete Sp pair constraint equation
Without loss of generality, we can let Sp,=S,up and
write the complete constraint equation as

dl
d,.(': —R) =25 0]
and
¢
30 A =0. )
Displacement: For » =0, eqn (a) and (b) are
R,—-R) =S, (c)
and )
S,, ° A; =0. ) (d)

Taking the dot product of eqn (c) with A] gives us the
displacement constraint equation for the Sp pair.

®R,—R)-A;=0. RO
Velocity: With n = 1, eqas (a) and (b) will become
R~k =S, ®
and
$) A= —S,-A. (®
Taking the dot product of eqn (f) with A/ gives us .
R -R)-A =S, -A. (h)

Substituting eqn (g) into (h). wil have
R,-R)-A,=-35,-4,. @
Equation (c) can now be substituted in eqn (i) to get
(R, —R)-A; = —(R,—R)- A
R,~R)-A +(R,—R-A =0 i)

or

which is reaily
d - X
‘-!—'[(R,—R,)-A,]=0. 13

Acceleration: For n =2, eqns (a) and (b will he
R-& =5, M
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from eqn (m), we will get

-

. A

. . " s o .
PRI N PRI N

asnd or
§,-A425,-4+S,A=0. . (m) R, -R) -4 +25,-A+5, X =0.
Taking the dot product of eqn (1) with A; and substituting * Substituting eqns (c) and (f) into eqn () gives us *
S,,-A;- - ZSH'A;—S,,'K" (RI— “;)'A:' + Z(Rz— Rl’)'A;+(RI- R;)'xll =0
which is

a2 :
R-R)-A = “'-’s,,’A,—S,,-X; d—;'.'l(nl—l;)'A;l"o-

ANALYSE CINEMATIQUE DES MECANISMES SPATIAUX A T70IS BARRES CONTENANT LES PAIRES SPHERE-PLAN
ET SPHERE-RAINURE

G.3. Sandor, D. Kohii, M. Hernandez, Jr.. A. Ghosai

REsuxé - On considire yénéralementc Gu'une paire dans ua récanisme spatial permet un mouve-
ment relatif de vis entre les merbres, ou Gu'elle restreint le mouvement des €léments qui
lui soat zelids.

En enployant les contraintes gforétriques des .paires de sphire-plan et de sphére-
rainure cinématiques, les &quatioss Pour le déplacement, la vitesse et 1'accélération sont
dérivdes pour les mScanismes avec trois rembres R-Sp~R, P-Sp-P, P-Sp-P, P-Sp-R et R-Sr-C
(R: révolute; P: priecmatique; C: cylindrigue: S: sphérique: Sp.: sphdre-plan; Sr: sphire-
rainure). Pour les valeurs connues cde la variable d'entrfe, les autres variables sont cal-
culées par des forrules non-itératives. Le procids Q'analyse est illustré par des exemples
nundrigues.
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KINEMATIC ANALYSIS OF FOUR-LINK SPACE MECHANISMS CONTAINING SPHERE-GROOVE AND SPHERE-SLOTTED-CYLINDER HIGHER PAIRS

ASHITAVA GHOSAL DILIP KOHLI GEORGE N. SANDOR
Research Assistant Assoclate Professor Research Professor and Director
Departaent of Mechanical Engineering of Mechanical Engineering Mechanical Engineering Design and
University of Florida University of Wisconsin - Milwaukee Rotordynamics Laboratories
Gainesville, Florida

= The geometric constraints of two higher pairs, namely sphere-groove and sphere-slotted-~cylinder, are derived.

Using these pair geometry constraints, input-output relationships are derived for several mechanisms containing
sphere-groove and sphere-slotted-cylinder pairs. The input-output equation for the R-Sg-R-R linkage is obtained
as a fourth degree polynominal in the half-tangent of the output crank angle. For other cases of mechanisms con-
taining a sphere~groove pair (such as R-Sg-R-P, R-Sg-P-R) the input-output equation is quadratic. The input-output
equations for the R-Sc~C-R and R-Sc-R-C are obtained as eighth degree polynomials in the half-tangent of their
output angles. For mechanisms with prismatic output containing a sphere-slotted-cylinder pair, the input-output
equation is a second degree polynomial in the output translation.
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:s3 2. INTRODUCTION Vectors were first used by Chace [7,8] to obtain
et vector equations for position, velocity and accelera-
< Mechanisms containing higher pairs such as cams, tion analysis.
5* sphere-plane, sphere-groove or sphere-in-slotted-
¥ cylinder, provide the designer with opportunities for Yang [9] used dual numbers to analyze RCRCR five

designing mechauisms and machines to satisfy more
complex and exact functional requirements than fea-
sible with only lower pair mechanisms. Higher pair
wmechanisns in general are compact and have fewer
links.

In recent years there has been considerable
developaent in tools for kinematic analysis of spa-
tial mechanisms containing lower pairs, but very lit-
tle has been done in analyzing spatial mechanisms
with higher pairs.

Kinenatic analysis of space mechanisms was ini-
tiated by the significant contribution of Dimentberg
[1). Dimentberg [2,3] demonstrated the use of dual-
numbers and screw calculus to obtain closed-form dis-
placement relationships of an RCCC} and other four-,
five-, six-, and seven-link spatial mechanisms con-
taining revolute, cylindric, prismatic and helical
pairs. Denavit [4] derived closed-form displace-
ment relationships for an RCCC mechanism using dual
Euler angles. Yang [5] used dual quaternions to get
displacenent relationships for an RCCC mechanism.
Wallace and Freudenstein {6]) used a geometric con-
figuration nethod to obtain displacement analysis of
a general RRERR2 I1inkage, also called the Tracta cou-
pling.

Lyevolute, € - cylindric pair
E - planar pair

e e e e et .
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1link spatial mechanisms. Soni and Pamidi [10) extended
this application of (3x3) matrices with dual elements
to obtain closed-form displacement relationships for
RRCCR spatial mechanisms. Soni, Dukkipati and Huang
{11] also used (3x3)matrices with dual elements to
analyze 6 link single loop and two loop spatial mecha-
nisms containing revolute, prismatic and cylindrical
pairs. Yuan [12] developed the use of screw co-ordi-
nates by way of which they developed closed-form dis-
placement relationships for all 3R-2C type spatial
mechanisms. Duffy [14]) has demonstrated the use of
spherical trigoncmetry and dual numbers to obtain
closed form input-output relation for four-, five-,
and six~link spatial mechanisms. Duffy and Crane

(15) also use the same method for the displacement
analysis of a general sgpatial 7-1ink, 7R mechanism.

Iterative techniques for analysis of spatial
mechanisms were developed by Hartenberg and Denavit
[16]. Uicker [17] explored in further detail the
matrix approach of Hartenberg and Denavit. Soni
and Harrisberger [18] used (3x3) matrices with dual
elements for an iterative approach to analyze spatial
mechanisms.

Finite screws were used by Kohli and Soni [19,20]
to conduct displacement analysis of single-loop and
two-loop space mechanisms involving R,C,P,H and §
pairs. Recently Kohli and Soni [21], and Kohli and
Singh [22] used the method of pair geometric con-
straints and successive screw displacements to con-
duct analysis of spatial mechanisms containing lower
and higher pair. Sandor, Kohli etc. [23] used the
above method to conduct displacement, velocity and
acceleration analysis of three link spatial mechanisms
containing sphere-plane and sphere-groove pairs.

In the present paper, finite screw displacement,
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expressed in vector form, and pair geometry con-
straints, also expressed in vector form, are used to
derive the displacement equations for four-link spa-
tial mechanisms containing sphere-groove and sphere-
in-slotted-cylinder pairs. Although, the analysis
of spatial mechanisms containing sphere-groove and
sphere-in-slotted- cylinder pairs_can be done by
modeling these higher pairs as SP? and RRP3, the
procedure is made unnecessarily complicated by intro-
ducing these hypothetical joints. The use of finite
screws and pair geometry constraints avoids this.

z 4

b TR R TR wee—

uait vector defining the direction of the third
joiat axis in the initial position - cylinder pair
3.

direction of the
cylinder pair 4.

uxit vector for defining the
fourth joint axis - grounded

locates the first joint axis up.

locates the third joint axis in its initial

Y3
position. b
locates the fourth joint axis u,.

unit vector along the direction of the groove
ezledded in cthe groove element.

unit vector perpendicular to the axial centerliae
of the groove defining the orientation of the slot
in the initial position, embedded in the groove
element.

- unit vector along the direction of the groove

exzbedded in the groove element.

unit vector, coincident with b in the initial
position, embedded in the sphere element.

unit vector initially coincident with ¢, embedded
in the sphere element. -

unit vector embedded in the sphere element, ini-
vector locating the sphere center in the fnitial
vector locating a point on the groove axis, but
rotation of the groove element pivoted at the
relative rotation of the sphere element pivoted at
the third C joint, with respect to link 3 (Fig. 2).
rotation of link 3 pivoted at the fourth C joint.
joint 1.

scalar translation along u, at

relative scalar translation of link 2 with respect

scalar translation at joint 4.

relative scalar translation of the sphere ele-ent

along the groove for Sg pair.
relative scalar translation of the sphere elecent
along the groove for Sc pair.

A
Froure 1. THe C-Se-C-C MecHaNisH. tially coincident with A
R
= position.
R*
*  1infcially coincident with R.
B
first C joint.
&
3
-]
4
s,
33
X to link 3 at joint 3.
S,
-
Fiouke 2. Ine C-Sc-f-C Mecnanisms, Se
3. THE FOUR-LINK MECHANISMS AND ASSOCIATED VECTORS
T
Figure 1 shows the C-Sg-C-C mechanism, figure 2
shows the C-5¢c~C-C mechanism. Also shown in the fig-
ures are the following vectors and scalar quantities.
The vectors are denoted by wavy underscores.
u, unit vector defining the direction of the first
joint axis -~ grounded cylinder pair 1.
38: spheric pair, P: Prismatic pair, R: Revolute
pair.
2
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Table 1 (continued)

where ;_\) = A teon l-l)L’u + lll“‘(,l'h) (e,
. B B D IPTI sin (Wpk) o us, [£9]

wiare,

. 1

Sl T tuythgtey U, " Wi

T T lytAty Yk, T 4y ®

G sh-n 5 ck-n

where u‘ and uy are axes of rotation, 1 .2 are the rotactions, sl and

sz are the translatiocas at the joints. 'l and rz locate the axis of

rotatisa |. ond "2 in the starting pesition.

Iquations (), (4), (), () and (3) can de written in a different

forn:
21 2 2
5’ - A’ + (cos? -I)xu * ""1‘.1) (h)
a2 2 2
!’ l’ + {cos? ~1)C” + .lnﬂl?u * g”sl (1)
r fre -
FIGURE Y. ¥ TOR M'ATIUN FIR FINITE Striw HRY ] T . vhere lu. u. SU' Du and uli are functions of ez and sz only and can

be expacded like squation (¢) and (f)

X : =X . (col‘z-l)l:'m + sing,(ux))

S, “ z 2

Q L R B T TR LT Y

\. Q‘ cli - (_;‘ - (go.?z-l)l.'xl + uinoz(uz-cl)
2

4 y Diy =By ¢ (costy-lilyy,) * stwd, (ua) W
Q A ?1: sy e {cos -l)l(uzw )-uzl + “".1(" xu )
< z a 2
6 R \ ¥ty = B (eonty Dluy (P cuyl ¢ sdedy(uyn (R-P))) 4 ups,
A; =A% (ol (uymhdxu, | ¢ 1m0, (e, 40)
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Ly = Gy,

-m
Y = Gy
X Y o=t et
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Ficure 4. VecTOoR NoTATION FOR FINITE SUCCESSIVE Lo

Scaew DiSPLAZEMENTS. € = CageOer ey = D ey

4. FINITE SCREW DISPLACEMENTS LT peen))

1a the case of a R or ? joint, the trasslatioa or rotation respectively
Fig.3 and 4 shov a rigid body [ connected to ground vanistes and the resulting equations cas be consideradle simplified.

by means of one cylinder pair and by a chain con-
taining two cylinder pairs respectively. By giving
successive screw displacements and using a shorthand
notation, the displaced position of A and R are
obtained ss showan in Table I.

Isdis 2

The dioplacad ponition of the vecter A atteched to body I in fig 3
s glvem by

A, vAe (""l’"(?l'f"h * ""l(?l'f’ {a)

-3
Por a point R on the vector A, the displaced posicion &s given by

?‘-." k.&

By < R0 Ceonty 1) {8y (-0))re; o 01n8, (9> (R-1D) & 80, »
P 18 & vector vhich lecates the axis of rotation Yy and R-P contains the
ek dimensions, vhich coe be writtes im terms of comstant tvist angles
and offsete.
The dioplaced position of A oad R in L shown in fig & (after screv ) ‘
displacenent ot jeints | and 2) ere obtained ss follovs. R ]
n = () - '
8. e’ + (oooty "!N . -Mztfl'f,’ ~ Fiaure 5. Twe SPHERE -GROOVE (S6) Farg,
n 1 |
2,°% o 0] ¢ (c0ut,-1)0,, ¢ 0la0,(u, X)) »u (L}
Y Y 1%, 1% % * % K ‘
4
3 i
ﬁ \
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S. PAIR GEOMETRY CONSTRAINTS FOR THE Sg AND Sc PAIRS

Figure 5 shows the sphere-groove (Sg) pair. The
vector A defines the axial centerline of the groove
and vector R locates the sphere-center. Figure 6
shows the sphere-in-slotted-cylinder (Sc) pair.
Vector ¢ defines the axial centerline of the groove
and vector b is normal to ¢ in the initial position.
Vectors A, b, and ¢ are all unit vectors. Vector R
1::::.3 the sphere center. Vectors c*, b* are also
s . T

The pair geometry constraints for the sphere~
groove and sphere-in-slocted-cylinder pairs can now
be defined.

The pair geometry constraint for the Sg pair is
given by (see Fig 1)

1_ 43 _ 1 )
YRy =Sy

1
where Bj is che displaced position of R obtained from

a screw displacement at joint 1i; 3‘3 i; the displaced
position vector of the sphere centér originally loca-

ted by 5 due to successive screw displacements at

Joint 3 and 4; and é; is the displaced vector A due to
a8 screw displacement’ar joint 1. N
The pair geometry constraint for the Sc pair is
given by:
1 43 1

Ry~ Ry =T 2

Equation (1) and (2) imply that the relative
displacement in the higher pair can only he along the
groove,

Also, there can be ne rotation ahout the vector
<. This condition can be expressed as

(g}ng;)-y;“ -0 3

1
wvhere, cj .d b; are the displaced vectors ¢ and b

due to a screw displacement at fofne 1, and~b*" fs
the displaced vector h* due to successive ncrlw dis-
placements at joints 3 and 4.

The constraint equations for velocity and acceleration
can be obtained by taking time derivatives of equa-
tions (1), (2), and (3). The general constraint equa-
tions for Sg pair can be written as:

a1 43, d° 1
& @R, - =5 —(s A;), n=0,1,2 4
d:"(‘j 53 ) dtn(sg‘j) n (%)

and for the Sc¢ pair

at o163 4t o1 .

po Rl e CUNLEL RN (5)
n

L ety = 0,1,2 Q)

de G G R |

6. ANALYSIS OF MECHANISMS CONTAINING Sg PAIR

To analyze four link mechanisms containing an Sg
pair, we need to consider equation (1). The terms
can be expanded as in equations (h), (i) and (j) by
using proper subscripts and superscripts. In order
to get an input-output relation between el and 8, or

S, (if cthe fourth joint is prismatic) it is necessary
to eli=inate %3 or 83 (depending whether the third

joint is a revolute or prismatic) and Ss. The S8
pair has four degrees of freedom, so the other joints
have to be either P or R joints.
6a. The R-Sg-R-R Case

In this case 91 is the input, 6“ is the output.

All the cylinder joints have to be forced to have
zero translation to make them revolute joints. There-
fore we have the following expressions:

l -

Bj =R+ (cosﬂl-l)[(gll(g-gl))xgll + 51“91(?1‘(5 El))

@)

1

Ay = A+ (cosd-D{(u)ayxy,] + siaf, (u;xA) (&
43 4 4 4

Bj = %j + (t:osea-].)(fl1 + 81“93?33 9)

RA C 4 and D 4 can be expanded like equation
f ) -3

H with proper change of subscripts and superscripts.

Taking the cross product of equation (1) with A1 ve
have -

1.1 43 .1
Ryxdy = Ry “o

The left hand side is known since 6. is the in-
put. Expanding and then simplifying the right hand
sicde of equation (10) we have,

337y = AR = A+ (cost D g0y ¢ stan,y

(A;'?J;) an
Taking the cross product of both sides with

f;' 93§ we have

4

1 4
Pl a2)

A 1,4 R N e i
(cos 3D (A -Cy 0 (A Dy ) = (A~ (R -R

Simnlifving and noting that equation (12) is actually
a scalar equation as both vectors are along A‘, we

PR y R A S I T T R S S ’ : N .
T 5 Atoloadadoadaden %este'a sn’ta e e s A m ol a2l L L v oh Ve et e .-
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have,

L 1. 4‘ 4 - ,‘1. ]_ 4 ; 4 \
(c0s7 312 (457 (34 D3 )] = 1450 (3;-R0)Dy4) a»
.similarily taking cross product with AIXC;‘ and sizm-
plifving we have -3-33
= sl 4 . 1, ,.1 4, 4 ,
sin;3lag @y57CaPl = 17 (B5=29)Cyy] a9
Equations (13) and (14) caa be written as
A c0593 =B+ A 15)
-A sin3y = C ' (16)
1 4 4 1 1 .4 4
vhere A = 45 (Cy57D39) B = Aym (Ry-Ry)Dyy (
17)
1,1 4 4
C= A - - xC
Ayt (Ry-RgIxCyy

Squaring and adding we have the input-output rela-
tionship as,

/
B2+2a3+ct-0 a8)

Simplifying expressions in (17) it can be shown that
all teras A, B and C are linear in sme,‘ and cosea
{Table II1)

Zadle 11

Simplifications of some Tector Expressioas:

a_s
3503y * (63030 + (coed~CyaCla, D) + [(agxCy)xu)xDy]

+ otat [0 dm ] + (IR, M n Gata®s, + oot 20080, + 1]

» (CyuD) + (cosd ~D-[o, (€32 0n, & (Cy=D )] + s1ng,(-(CyxD )xu,]

= (6y9y) + leont D" (S, mm ) = (500} »
Siatlarly, 5;-:_:,; = G0y + (cond -1 (u =k Dy uu, |

+ 93, (uye(k,1Dy)) + !A'?); ®

- (E)'?J); ()
Statlarly, Byecyt « Qcy) ¢ 1y @
and !;'El; = O ug)y e ‘?t'!‘s:’ «
5;5. . Xy ¢ (eoedob)le, Ky ), ¢ siad, (uoRy ) {3)
Tyt * Tnpe ® (con® oD Ty dmu ] o sta ugy,) ®
Ipe © (gm0huy = o0t ®
Tye © toy7¥) w

So the input-output relation is of fourth degree in
the tangent of the output half-angle. The input-
output relationship is of the form,

al(cos%k-l)z + nzsinzék + :asin-"k(coseb-l) +

(19)
a,(cos3,-1) + agsin®, + 3, = 0
2 8
1-x 2x
using cosab - 7 * "“"15 -b__ X, = tan —
1‘0’!6 ]*xb

ve get,

2
xl.z(&'xlw:&—:;_,‘) + x.,.3(--; Y 225) + xl‘"(ixz-Z‘L4+Za6)

+ x:‘(l'w-_)) =g = 0 (20)

where =, , j = 1,2,3,4,5 2re defined in Table III.

Tatle 1II

2 o2
sdg) v o2y g

-
s e

3 2 s

25 ® [:*.:‘:fzezcs‘de) sag ~2clczodz)
3 I35k 05 L ag v Jedp
2 eyl gl Lnr g g

R N R e AR AR RO A A)

LS S S (’3j"5j1"5u X (EDy) ¢ Byxapx D3]
4 = .’ ll ' - " Pl -
SRE T ALHS RE M AU 7Ly

SRR LR (L‘jl'gjL - 551'"‘.%‘“5"53”“3.- * B, )
€:* :'34'53)]'[5jl'55|] N f;":\'fa'(h‘f:)) ¢ Py=iaCy)
4" :"'.[3j1’(§3'93)l

s- :’:!3_6"(‘.'4'(53’93”"':'11 < 3la (€200

"‘:r;‘jl"'.‘c"“.:s"?s)” - '531"53"?3”

sl

€, - ’-’:Efj"(‘.‘q‘(fs'?s“‘":'x]
4= zstfj"“.‘a"“.:s'l’s”]
4, - 5:[33"(‘.‘4"(55’?:”’ - 35‘3;‘“&“53'93”':’:’
1-x32 Zx3
Agaia usirg cosa3 = 2 sinﬂ3 = 5 s
I+x 1+x
3 3
;]
- 3
x3 tan -2
and usiag trigonometric identitfes:
sin;3x3 + .‘.0563 =1, (21)
sinr3 - x3cos-'*3 = xq (22)
we have, xy = B/C =C/3 + 2A {23)
uslng ejuation (1) and taxing the scalar product with
A1 we pet,
1 .43, 1,1 .1
S = (R[-R,7)-A /JA,A 24
e T Gy A Ay 24

Takicz the derivatives ..f equation (20), (23) and
(24) ve cz~ obtaln exprescio. for velocities and

6b. The 3-Sg-R-P, R-Sz-?~X and i.-Sg-P-P Cases.
for cechanisms contaiaii.., S¢ pair, like the
R-Sg-3-? zechanism, the R-Sg-P-R wechanism and the

R-Sg-?-? zechanism, the input-output relationships can

be founc after simplif-ing the expressions for finite
screw displacements and the pair geonetry constraints
(see reference {24] for details).

‘See also Ref. [24].
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1'.‘! 7. ANALYSIS OF FOUR LINK MECHANISMS CONTAINING AN
iW Se PAIR of 91 and 1link paraneters (refer to reference [24) and
:3 Table IV for details.
N The Sc pair has three degrees of freedom, so
‘¢J there can be only one cylindric joint and the two Table 1v
e other joints are revolute or prismatic. To analyze .
four link mechanisms containing an Sc pair we need Coe ':m" of ehe 8th degree polynomtal for R-Sc-C-R Machantsa.
to consider equations ( 2) and ( 3). 1In order to .1.55?32.,1. 3,(co88,-1) + ase1n0,
:: get an expression between input 2, and output (s) 1.1
s i and/or S 4 Ve need to eliminaté one joint rota- 27 Gyt 31" T ALY Agleont o)+ Agstng,
_:-}; tion and/or translation. s - 3fvgjf =8, ¢ 2)(con8,-1) + Batnd,
e RV WS YO
4 7a. The R-Sc-C-R Case By 7 eyt Tagne * By ¥ Bylcondl) o Bystng,
- wrut:a this case, Sl z Sa £ 0. Equation ( 2) can be € »g"f;"f;:’ - ,"‘,'l,’ = vy ¢ vylcosd, ~1) ¢ vystng,
: n as 1
- ’ € " :J-s;) b; ®c) v cpleonz -1) ¢ cysind,
Lo 4 1 1 (23 .
& + (cose 5371 c +sina,0.% + uls, + 2 B .ot
-_‘ j ( ) j 3~3j ~3j 3 CiT » !.{1 x1 Lty az :’ '-D" u’ cj (u‘.n,)
" . .l 1
) By writing the dot product of equation (25) with - BTy 8T Gtuey bt Sy 0y
i and uy; ve get after simplification, ey ¢ @eu) - gty
L
. Y2 ‘;"”‘4'("4"‘1”"‘5 MO R Y “(ejea)
- (1-cosd )a, + sindyb) + ¢, = 0 S
., '. - 1- (K,
n 156y 2l "3 T INECD R o) G
- where a, = c,* =c,* RS
_‘:‘ 1 23233 + 9 g ‘31 (26) Ay w-ts 537550 K anes Ay ” -(c,-bl) (o "Xp0)
. - - - l. l - L1
R € Cj'(Rj 3j -(c 'Rj) Ay m =ty g Ry v
a -3 e (S;'?;"!Jh-’ 5= (E;'?;"‘?A'F:u-"“s
Simplifying equation ( 3) we obtain 11 i
x l, . \:J-bj) (“h"!b-)
t, az(l-cosas) + bzsina3 te, = 0, (27) ¢, - foﬂ'?
..-1 - 1I l . uly <)
e where a. = -(c xb ) X €3 = [eymdyhLlugbonyd
R 2 <33 3jb' ¢, » telasd) (uene)
N 3 " 10000 (27
} b, = (ratyev ! e g o ? 2
~J .j Jjb (20) H ] !1 lz(:oﬂ‘-l) - l’lh\e6 + x‘-mo‘(:o.e‘-u + x,un L "s‘“":.‘”
~ . (clkbl)'bsls Iel = ¥, + Yy(con8,~1) + Yyo1n9, + Y atnd,(cost -1) + ysun’e‘ + Yg(eona -1)?
- e et - -~ v
-.-:: “ loc| = Zz - :I(eoﬁ‘-l) + l,-tn!‘ + z‘-tno‘(eo-e‘-x) + l,llI\IO, * ls(coﬂ‘-l)z
-5 In Table II the expanded terms for x3jb*. Yaypt X, e 23z, ¢ v)8,-28, (20 4 C))
A s 1 1
~; are given, W n e ] 26
v gl e can eliminate 3 from (26) and (27) X, e 207n 4B, e B, )] - 282K, 4 €))% 8,08, 5 €]
{ 2
1-x 2x X, 28 ila, + v} +# B (23, + v,)] -~ 2[8.(2A, + C.) + B (2, + C))
3 15y 2
S after using cosﬂ3 = 32 and sins3 - 3 R ? e e t
14,‘3 14_)‘32 B, = 2030235 4 vg) 4 By(23) + v )] - 28,(2y # C)) 4 8,028, + C)]
- X, w205 723, 4 v,)] - 2(8,(24, + €]
. ) 3%ty 324y + Gy
X, = tanf./2
- 3 3 B 210, = B,) - 2202, & )
- The elininant {s given by lab||be] - |ac|2 =0, () LACE TN
ac |be,
& and the common root is given by Xy = - l——l - -— - Tp o i m BByt B0, - By
~,:_v Iabl Jac! Tye 2:y - g8 4 25,0, - By
. 6) Y, 2T - BBy e 250 - B,
e vhere ‘ab| = (2a,+¢ ){2b,) - (2b )(2a,+c,) Ts TG R e R
. Y, * 2301, - Wy - - -
- lbcl = 2b.c. - 2b.c. and (31) 'y 2 2"2 z, zazc3 + ancz uzv] M’v2
1°2 271 2,00z -2
3 lac] = (2 ) (2 e b T I Y
k- lac| = (2a,4c.)c, - (2a,+c,)e, = 2a.c, ~ 2a,c .
'._f 1 °17¢2 2°%2’%1 172 271 2y Bl - Wy - gy, 2, = 2,0y - 2y,
A
o PP AP P ST W TEPC ST I VO T Ty PEPUVT PRUEE v PR v T ORI O PR W S W S -1

For the R~Sg-R-P mechanism the input-output
relationship is quadratic in output displacement.

Equation (29) is the input-output relationship.
All the terms a bi' €5 i = 1,2 are linear in sin? 4

For the R-Sg-P-R mechanism, the input-output rela- . 1

tionship is quadratic in the output tangent half and cos:,. Equation (29) can be simplified to give

angle. For the R-Sg~P-P mechanism the input-output 3 1

.relationship is linear. b oi_,.l = 0, a polynomial in tan (94/2) in terms
1‘
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d‘ + dz(cu!‘»z) + $3sin P G"'.a!‘(couo‘-l) + &’.ln%‘ + ‘6(“'96'”2
2 2
+ Gsnln 0‘ * d‘(:eﬂ‘-l) + !]:lno‘(:ano‘-l)z + 6,(:0:04-1)311120‘
+ data’e, + 8 (os9 -1+ 1. aine tcond -1)? + 6. etn?
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waing cose, = -;‘—2 . (m;s‘ ~l) - :;7 and olnd, » 2% /(l"l ) che
L) L3

final Sch degres polynomisl is oitalned aa

)
- - +
n ““u & 2, + as, - uw) x 7(25 - u + u - 168 x 6

13

¢mu-u)¢x (“ _“ ‘“ ‘“ - 188, 3

(A8, - 68 MR SN -8,
12

2
. u -
( 6!,‘“50“‘-85.*166)0‘ (ZB-“ 0‘6)“2

“s, - 2, + 48y) + = (28 22

Equation (30) gives 8,. Toget S, and T we

again take suitable dot and cross products:

- ) - (cos0,-1)g, %1 - (@y¥xeh)

1
=1 (32)

j-(Dijc )

1 4 4 4
T = [f%ifgiz ~ (cos® -l)C ]-(p31f931)

33

%
(c ) (03_1 3j)

The R-S¢~C-P, R-Sc-R-C and R-Sc~P-C Cases.

For the R-Sc~-C-P, R-Sc-R~-C and R-Sc~RC mecha-
niems, the imput-output relationship and the expres-
sions for the intermediate joint variables can be
found afrer simplifying the expression for finite
screw displacement and the pair geometry constraints
(see reference {24] for details).

7b.

For the R-Sc~-C~P mechanism the input-output rela-
tionship 18 quadratic. For the R~Sc-R-C mechanism
the input-output equation 1s an eighth degre¢ poly-
nomial in the output tangent half-anzle. For the R-
Sc-P-C case, the input-output relationship i{s quad-

. Q.‘-' " ,‘-. y. ) . N
L V. W N W SRR RT

S e e

Y Y Y vy

*a:ic. The expréssisn for intermediate joint angles
an be frund by tax suitable dot and cross pro-
25 in a mannar si 27 to the R-Sc-C~R case.

S, WDMIRICAL EXAMPLYI

le F-%:-~R-R Mechaniss.
o, = 7 3’()3 - 0% :'.?3 = ~11 + 24 + 0k
5, = 2 +3] =~k ;3 = i +1j + 1k
G - a1+ 0.245 = 2 Firsuy e 01 + 13 + 0k
g, = 0i +0.381 + 0.35¢;4 = 0.7071+ 0.7071 + Ok
ans 41 {s the input. U-knowns are LJ. T4 and Sg
ine plots of the ;4 and %3 in terns of %1 are shown in
figures 7 and 8.
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Figueg 5. 3.2~ o e) ERSYS #02 T-55-1-R Mg
2. ~C-R Mechanisa. & - o
en: ) . . N
2 *0j  +ox g py=-u #2) 4ok
ga +33 +Ck ; R = 11 +lj +1k
4 +0 707j- 70 k, ug = 0. S77i+0 577j+0 577k
g, = -.707440.707§4C ib o= 14 +0j +0k
e = 0: +Oj +1k P b= 14 40] +0k
and = {s the input. The unknowns are 03, Ba, Sh
and . The plot of ¢, {n terms of 8 i{s given in
Figure 9.
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9. CONCLUSION

Displacement eguations have been derived for sev-
eral fcur-link spatiai mechanisms containing sphere-
grcove and sphere-slot:ed-cvlinder pairs. Velocity
and acceleration relatiazships can be obtained by dif-
ferentiating the displzze—en: equations. The grooves
of these pairs were assi=ed to have straight axial
centerlices. Howevar, a =—ore generalized groove may
be one where the cezterline is a spatial curve. The
authors are working on zhe analysis of these and also
of other three, four, Zive azd six link mechanisas
cozzaining other hizher pairs. The expected result
of the work will be ressried in forthcoming pavers.
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Abstract of Thesis Presented to the Graduate Council
of the University of Florida in Partial Fulfilliment of the
Requirements for the Degree of Master of Science

ANALYSIS OF SPATIAL MECHANISMS
CONTAINING HIGHER PAIRS

By
Ashitava Ghosal-
August 1982
Chairman: George N. Sandor
Major Department: Mechanical Engineering
In this work, results of the investigation dealing with analysis
of spatial mechanisms containing higher pairs are presented. Com-
plete analytical expressions for the position, velocity and accelera-
tfon analysis for several three-, four-, and five-link spatial
mechanisms containing higher pairs are presented. Also presented
are computer programs for the analysis of some of these mechanisms.
A higher pair as distinct from a Jower pair allows mure
degrees-of-freedom between its elements. The kinematic analysis
of spatial mechanisms containing higher pair§ is based on the
- concept of finite screws and pair geometry constraints. Expres-
sions for finite screws and their derivatives have been developed
and expressed in a shorthand notation. The pair gecmetry con-

straints for sphere-plane, sphere-groove, sphere-slotted-cylinder
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and cylinder-plane higher pairs are presented. Using these pair
geometry constraints, and the finite screws and its derivatives,
several mechanisms containing the above mentioned higher pairs
have been analyzed for position, velocity and acceleration.
Computer programs are given for the analysis of some of the
typical three-, four-, and five-link mechanisms. The use of

the programs are demonstrated in the examples in Chapter VII.
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Abstract of Dissertation Presented to the Graduate
School of the University of Florida in Partial Fulfillment
of the Reqguirements for the Degree of Doctor of Philosophy

OPTIMIZATION OF SPATIAL MECHANISMS
. By
Charles Frederick Reinholtz
August, 1983

Chairman: George N. Sandor
Cochairman: Joseph Duffy
Major Department: Mechanical Engineering

The material in this dissertation can be effectively
divided into two subtopics: phiiosophy of optimal mechanism
design, and optimization of dyad-based spatial mechanisms.

The first subtopic, philosophy of optimal mechanism
design, is intended to be general in nature, applying to all

' types of mechanisms, both higher and lower pair, and both

planar and spatial. This is covered in Chapters One through
Three. Chapter One examines past approaches to mechanism
optimization. Chapter Two is a brief review of optimization
theory, pafticularly as it apglies to mechanism optimization.
Chapter Three draws upon the insights gained in the first
two chapters to formulate a general approach to the mechanism
optimization problem.

The second subtopic of this dissertation, optimization

(- of dyad-based spatial mechanisms, is covered in Chapters
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Four through Seven. This is actuall& a rather limited

2 _(r example of applying the philoscohy developed in the first
three chapters. Nebertheless, the.mechanisms treated in
this section are believed to resresent some of the most
useful motion generating spatizl) mechanisms, and, therefore,

those for which improved design theories are most urgently

[
)
P D s

needed. In Chapter Four, clossd-form synthesis equations

Ial.
I-J‘

are derived for dyads containinc revolute (R), spheric (S)
H and cylindric (C) pairs. Chapta2rs Five and Six present )
detailed examples of the optimization of the four-link

RCCC and five-link RSSR-SC and RISSR-SS mechanisms. Finally,
Chapter Seven outlines proceduzes for the optimization of

> other dyad-based spatial mechanisms, and offers suggestions

8 for further research.
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5 ' KINEMATIC SYNTHESIS AND ANALYSIS

THREE-LINK SPATIAL FUNCTIONOEENERATORS WITH HIGHER PAIRS

; By

é Manuel Venadas Hernandez Jr.

Ppril 1983

% Chairman: Dr. George N. Sandor

t ' Major Department: Mechanical Engineering

R - Function generation synthesis of spatial mechanisms with only three
l% Vinks is achieved by employing higher pairs (sphere-plane (Sp), cylinder-
3 plane (Cp) and sphere-groove (Sg) pairs) to constrain the motion of two

T Tinks. ) . | '
3 This dissertation shows the methéds and procedures for obtaining the
;ﬁ - equations for mu]tip]j—separatedhpreéision point (MSP) synthesis for four -
< spatial function generators - R-Sp-R, R-Sp-P, R-Cp-C and R-Sg-C. ;

2 Higher pair constraint equations in vector form are utilized to

. obtain closed-form solutions fbrlihe different synthesis cases of various
v§ numbers of positions and specified and unknown parameters. The method ‘
53 of elimination is used extensively to solve the resulting non-linear

systems of equatfons.
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Kinematic synthesis an< 2nalysis cf the four spatial function

generators is performed in vzc*or notations and with screw displacements

in vector form. Explicit égu2tions are also obtained from the investi-
gation of the transmission c>zracteristics of these mechanisms.
The synthesis procedures just completed vere then augmented by

devaloping design criteria f2r the pair elements to assure range of

mobiiity and avoidance of irtarferencs.
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